Hur mår vattnet vid Angarnssjöängen?
Hur mår vattnet vid Angarnssjöängen?
Slutversion 2017-09-05

Författare: Hans-Georg Wallentinus
Foton: © Hans-Georg Wallentinus

Föreslagen citering:
Hemsida: www.angarngruppen.se
Innehåll

Sammanfattning ... 4
Vattenanalyser vid Angarnssjöängen .. 5
 Vad är det vi mäter? .. 6
 Fosfor ... 6
 Kväve ... 7
 Konduktivitet .. 7
 Metaller i vattnet .. 8
 Metaller i sediment ... 8
Provtagningsplatserna .. 9
 1 Lundbydiket övre ... 9
 2 Lundbydiket nedre och 3 Åstadiket .. 9
 4 Kvarnbäcken (Gävsjöbäcken, Olhamradiket) ... 10
 5 Lingsbergsdiket .. 10
 6 Utloppet ... 11
Närsalter .. 12
 Fosfor .. 12
 Kväve .. 15
 Jämförelse av stationerna Lundbydiket övre och nedre ... 19
 Kväve-fosforkvot .. 20
Konduktivitet .. 22
Metaller ... 24
 Två provtagningstyper .. 24
 Metaller i vattnet .. 24
 Metaller i sediment .. 26
Jämförelser med provtagningar 1974 och 1985/86 ... 32
Sammanfattning

Vid fyra tillfällen, från april 2016 till februari 2017 har Angarngruppen tagit vattenprover i de tre största tilloppen, samt i utloppet. I Lundbydiket togs prover på två ställen, samt i ett mindre dike som ansluter till Lundbydiket ("Åstadiket"). De övriga provtagsningsplatserna var i Kvarnbäcken ("Olhamradiket"), Lingsbergsdiket, samt i utloppet (Hackstabäcken). I augusti 2016 togs också sedimentprover. Provresultaten har jämförts med en serie provtagningar från andra halvan av 1980-talet.

Jämförelsen med värdena från 1980-talet visade att det i varje fall inte blivit sämre vattenkvalitet nu än då, och i många fall har halterna gått ned. Det finns en årsvariation hos kväve och fosfor med höga värden för fosfor på eftersommaren och för kväve under senhösten. Samma mönster går igen i 1980-talsserien och måste hänga samman med brukningsmetoderna i det omgivande åkerbrukslandskapet.

Värdena i utloppet är så gott som alltid lägre än i tilloppen, vilket visar på en fastläggning av såväl närsalter som metaller i sjöängen.

För närsalternas del (kväve och fosfor) är Lundbydiket det mest belastade och för metaller Kvarnbäcken och i viss mån Lingsbergsdiket. Åstadiket, som nu provtagits för första gången visar på förvånande höga värden av några metaller. De två provtagsningsstationerna i Lundbydiket (avstånd mellan dem på ca en kilometer) visar att det lokala tillskottet av närsalter är betydande.

Sett till närsalthalterna ligger de bland de högsta i Naturvårdsverkets klassning av vattendrag. Men sett till andra områden i Östra Svealands jordbruksområden är de ganska normala. Några av metallvärdena ligger också över eller mycket över Naturvårdsverkets riktvärden, medan andra ligger klart under.
Vattenanalyser vid Angarnssjöängen

Resultat från tre tidigare provtagningsprogram har fungerat som jämförelsedata. Följande provtagningsserier har använts (det är bara serien 1987-1990 som gått att jämföra i någon större omfattning):

Vad är det vi mäter?

Fosfor

I våra prov har två typer av fosfor analyserats, fosfatfosfor (PO4-P) och totalfosfor (tot-P). Totalfosforanalyser visar, som namnet säger, hur mycket fosfor det totalt finns i vattnet, medan fosfatfosforanalyserna visar hur mycket som är tillgängligt för växterna. Mycket av fosforn brukar vara bundet i partiklar i vattnet, men kan övergå i fosfat-fasen bl.a. vid syrebrist i vattnet eller genom biologisk aktivitet. Eftersom mycket fosför kommer till sjöängen bundet till partiklar, kommer en hel del av detta fosför att sedimentera och försvinna ur kretsloppet. Det sker i stor skala i Angarnssjöängens botten. Ett av syftena med den planerade Lundbydammen är att öka sedimentationen så att mindre mängder fosför kommer ut i sjöängen. Ett problem är att om det under någon period blir syrefritt i vattnet kommer fosför
ifrån sedimenten att frigöras och komma ut i vattnet som fosfatfosför och alltså vara tillgängligt för växterna. Detta är fallet under en normal vinter och det leder naturligtvis till en ökad igenväxtning.

Jag har valt att använda mängdangivelsen mikrogram per liter (μg/l) för alla närsalter, även om det blir höga tal för t.ex. totalkväve, detta för att inte förvilla er läsare.

Kväve

Vid vår provtagning har fyra olika kvävetyper analyserats, mest för att de ingick i analyspaketen. Liksom för fosför finns totalkväve (tot-N) som är alla typer av kväve som finns i vattnet. Nitratkväve (NO$_3$-N) är den viktigaste delmängden, eftersom det är nitratkvävet som tillsammans med fosfatfosforn bestämmer hur mycket växtligheten kan växa till. Nitritkväve (NO$_2$-N) visar lite om syreförhållandena i vattnet, höga nitritkvävehöjden pekar mot syrebrist. Det gör också ammoniumkvävet (NH$_4$-N) som främst blidas under syrefrihet. De två senare parametrarna är hela tiden mycket låga i våra prover. Därför har jag valt att inte diskutera dem i den här sammanställningen.

Kondukтивitet

Utöver natrium och kalium kan det förekomma mer eller mindre av andra metaller. Några av dem fängar vi upp genom analysen av metaller i vattnet. Kondukтивiteten anges i millisiemens per meter (mS/m) och är ett mått på hur mycket ström salterna i vattnet kan transporter. Kondukтивiteten är temperaturberoende, så alla mätningar måste normaliseras till +20°C.
Metaller i vattnet
I samband med första vattenprovtagningen i april 2016 togs också prover för analys av vissa metaller i vattnet. De metaller som analyserades var kalcium, järn, kalium, magnesium, natrion, kisel, aluminium, arsenik, barium, kadmium, kobolt, krom, koppar, kvicksilver, mangan, molybden, nickel, bly, strontium, zink och vanadin. De flesta är ointressanta för oss, men ingick i paketet. Mängden anges i μg/l, precis som för närsalterna,

Metaller i sediment
I samband med augustiprovtagningen togs också sedimentprover för analys av några metaller. Medan analys av metaller i vattnet ger en ögonblicksbild av situationen, visar metallanalys av sediment hur det sett ut över en lite längre tid, i det här fallet kanske under våren/sommaren/-hösten eller ännu längre tid. De metaller som ingick var arsenik, barium, beryllium, kadmium, kobolt, krom, koppar, järn, kvicksilver, mangan, nickel, bly, strontium, vanadin och zink. Dessutom analyserades torrsubstanshalt som ger en uppfattning om hur väl sedimenterade sedimenten är. Mängden anges i mg/kg torrvikt, medan metallerna redovisas som μg/l.
Provtagningsplatserna

1 Lundbydiket övre
Provtagningsplatsen är belägen omedelbart söder om Angarnsvägen.

2 Lundbydiket nedre och 3 Åstadiket
Provtagningsplats för station ”Lundbydiket nedre” är vid den s.k. kobryggen, där vandringsleden korsar diket. Provtagningsplats ”Åstadiket” är beläget ca 50 meter SV om Lundbydiket nedre, ungefär där diket kröker mot söder. Dessa två diken markerar gränserna för Lundby gårdens mark.

4 Kvarnbäcken (Gävsjöbäcken, Olhamradiket)
Provtningsstation ”Kvarnbäcken” är belägen omedelbart söder om Angarnsvägen.

![Figur 4. Provtningsstation ”Kvarnbäcken”. April 2016.](image)

5 Lingsbergsdiket
Provtningsstationen ”Lingsbergsdiket” ligger uppströms spången över ån. Sedimentprovet togs längre upp längs ån där det var lättare att komma åt.

![Figur 5. Lingsbergsdiket uppströms spången. Juni 2003.](image)
6 Utloppet
Provtagningsstationen "Utloppet" ligger nedströms dämmet.

Närsalter

Fosfor
Fosfor har mätts i alla de vattenprovserier som tagits i och vid sjöängen, alltfrån 1974 och framåt.

![Totalfosfor 2016/17](image)

Två provtagningsstationer står i särklass i augusti, Lundbydiket nedre och Åstadiket. Dessa två lokaler har mycket omgivande åkermark i närområdet. Lundbydiket övre har normalt de högsta värdena av undersökta stationer i tidigare undersökningar och räknar man bort de två ”nya” stationerna, så är det fortfarande så. Under vintern är värdena rätt likartade på samtliga stationer utom Kvarnbäcken som ligger tydligt under (som vanligt) och utloppet som, i varje fall i december, ligger klart högst av alla stationer.

Utloppet uppför sig lite annorlunda än övriga stationer. Det har samband med att fosfor fastläggs i sedimenten när vattnet från tillloppen passerar. Därför är det ett lågt värde i augusti, eftersom fastläggningen är aktiv under eftersommaren. I december däremot har det genom isläggningen blivit syrefrihet i en del bottnar och fosfor läcker ut. Att värdet är betydligt lägre i februari har sin bakgrund i den milda vintern, där provtagningen föregicks av en mild period med våravrinning. Att det var isbelagt just under provtagningsperioden verkar inte ha hunnit
spela in, eftersom det tillrinnande vattnet förefaller att ha tillfört syre till bottnarna (jfr figur 10).

Figur 8. Fosfatfosforhalterna 2016/17 uttryckt i µg/l.

Vid de båda provtagningsplatserna i Lundbydiket ligger andelen lättupptaglig fosfor (fosfatfosfor) omkring 50 procent, vilket är ganska mycket (figur 9). Lundbydiket övre går i augusti upp i 60 procent. Normalt vill man ha nedåt 20 procent, och det finns också vid vissa tillfällen i några av måtpunkterna. Åstadiket ligger förhållandevis lågt under sommarhalvåret, men drar iväg upp mot 50 procent under vintern. I Kvarnbäcken är värdena så låga som man skulle vilja att det var över allt, utom i augusti, då värdet är uppemot 50 procent. I Lingsbergsdiket är andelen fosfatfosfor också hyfsat låg.

Som vi redan konstaterat, uppför sig utloppet lite annorlunda. Under ”normala” vintrar brukar det läcka ordentligt med fosfat, men det antyds bara av värdena i december 2016. Som jämförelse har jag lagt in fosförvärdena från slutet av 1980-talet, då vintrarna fortfarande var normala. Den kurvan visar att läckaget av fosfor från bottnarna är avsevärt under vintern. Man brukar säga att sjöar med under vintern syrefria bottnar fungerar som ”fosförpumpar” (figur
10). Men vintern 2016/17 blir det inte alls så. En sannolik förklaring är att det finns mild-
perioder då smältvatten rinner ut i sjöängen och syresätter bottenvattnet, vilket motverkar
utläckaget av fosfatfosför. I februari 2017 var det en utpräglat sådan period.

Figur 9. Mängderna fosfatfosför, totalfosför samt andelen fosfatfosför 2016/17. OBS! Olika
skalor.

Kväve

Till skillnad från fosfor fastläggs inte kväveföreningarna i sedimenten, men kan naturligtvis - precis som fosfor - tas upp av vegetationen.
Det ska redan från början sägas, att kvävevärdena från Kvarnbäcken i april är starkt avvikande. Det måste ha varit avsevärda mängder kväve som kom ut i ån just i anslutning till provtagningstillfället. Andra parametrar visar inte denna avvikelse.

Precis som för totalfosforn, ligger de två mätstationerna i Lundbydiket samt i Åstadiket högst för totalkvävet, i varje fall i decembermätningen. Lingsbergsdiket har en förhållandevis hög halt i april och när det gäller nitratkväve i februari.

![Figur 12. Totalkvävehalter 2016/17. Mängder i µg/l.](image)

Precis som när det gäller fosfatfosfor är det bättre ju lägre nitratkvävemängderna är procentuellt sett. På stationen Lundbydiket övre är det inte mindre än 70 procent växttillgängligt kväve i vattnet i december, något som tyder på att det nyligen skett någon gödsling uppströms. I Lundby nedre har procenten redan gått ned till 40 procent. Mycket händer alltså på vägen mellan de två provstationerna som ligger ca 1 kilometer ifrån varandra. När det gäller fosfor är det tvärt om jämfört med kvävet, halterna ökar mellan provtagningsstationerna.

Figur 15. Nitratkväve på fyra mätstationer 1987-1990 (blå) och 2016/17 (röd).

Figur 16. Totalvävehalter på fyra mätstationer 1987-1990 (blått) och 2016/17 (rött).
Värdena för totalkväve visar i princip samma bild som för nitratkväve och kräver inga ytterligare kommentarer. För totalkväve ligger värdena som regel i den översta 97 %-percentilen.

Jämförelse av stationerna Lundbydiket övre och nedre

Figur 17. Jämförelse av fosfor- och kvävemängder mellan Lundbydiket övre och nedre.

Fosfatfosfor- och totalfosforhalterna i Lundbydiket är betydligt högre på den nedre stationen jämfört med den övre vid augustimätningen, vilket pekar på ett kraftigt lokalt tillskott under eftersommaren. Men även övriga delen av året ligger Lundbydiket nedre högre än Lundbydiket övre, även om halterna är betydligt lägre.

Kväve-fosforkvot

Växternas tillväxt regleras alltså av tillgången på närsalterna kväve och fosfor. Det har redan diskuterats att för kvävets del är det nitratkväve som är den växttillgängliga delen, medan det för fosfor är fosfatfosfor. För optimal tillväxt ska förhållandet mellan mängden kväve och fosfor (N/P-kvot) vara 10/1 (omräknat till molvikt, blir det lite lägre).

Figur 18 visar att det som regel finns betydligt mer kväve i vattnet än 10x fosforvärdet, som representerar jämvikt mellan ämnena. Ovanför den streckade linjen finns alltså relativt sett för lite fosfor och under för lite kväve. Det är egentligen bara i augusti som det råder kvävebrist, och det hänger samman med de mycket höga fosforhaltarna i augusti.

I normalfallet är alltså fosforn begränsande för tillväxten. Det här är det normala i stora delar av Sverige och det är därför man försöker fälla så mycket av fosforn som möjligt i reningsverken. I mitten av Östersjön är det där emot kvävebrist och det är därför man nu, genom EU-direktiv, håller på att försöka ta bort även kväve ur det vatten som når Östersjön.

För sjöängens del kan man alltså slå fast att den mängd fosfatfosfor som tillförs bestämmer hur stor vegetationstillväxten blir. Och eftersom mängderna fosfor är höga relativt sett, blir också vegetationstillväxten och därmed sedimentationen av dött växtmateriäl hög och en funktion av fosforhalten.

Det är intressant att kunna konstatera att det i utloppet är relativt sett ont om fosfor eller under vintern och det råder balans mellan ämnena. De låga värdena under sommarhalvåret visar på fosforfastläggningen i bottensedimenten. De normala värdena under vintern indikerar det fosforläckage som diskuterats tidigare.
Konduktivitet

Det är förhållandevis moderata skillnader i konduktivitet över året. Värdena för Lundbydiket övre och nedre samt Åstadiket är i princip identiska, vilket indikerar att förhållandena i tillrinningsområdet är likartade, medan de övriga tillloppen visar andra förhållanden. Alla stationer utom Kvarnbäcken har en puckel i augusti. Inga alarmerande höga värden.

I samtliga fall 2016/17 var februarivärdet högt jämfört med 1987-1990. Det måste ha sin förklaring i att provtagningen föregåtts av en period med vårflod, även om det var tjock is just vid provtagningstillfället.

Ser man till konduktiviteten i sjöängens vatten jämfört med sjöar i Sverige ligger värdena ibland de 97 procent högsta i landet. Trots det är värdena rätt normala för Östra Svealand.
Metaller

Två provtagningstyper
Som nämnts analyserades metaller i vattnet i april 2016 och metaller i sediment i september 2016. Vattenanalyserna ger en ögonblicksbild av hur transporten av metallsalter lösta i vattnet ser ut. De kan vara starkt avvikande från vad som finns i sedimenten. De senare visar en mer ”sammanfattande” bild av metaller i vattendraget som är bundna vid partiklar som kommer med vattnet.

Metaller i vattnet
En mängd olika metaller ingick i det ”paket” vi beställde. Några av de viktigare diskuteras nedan.

<table>
<thead>
<tr>
<th>Station</th>
<th>Aluminium</th>
<th>Järn</th>
<th>Mangan</th>
<th>Magnesium</th>
<th>Krom</th>
<th>Zink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lundbydiket övre</td>
<td>766</td>
<td>1510</td>
<td>194</td>
<td>6560</td>
<td>1,17</td>
<td>5,56</td>
</tr>
<tr>
<td>Lundbydiket nedre</td>
<td>718</td>
<td>1650</td>
<td>229</td>
<td>6800</td>
<td>1,14</td>
<td>7,7</td>
</tr>
<tr>
<td>Åstadiket</td>
<td>228</td>
<td>2030</td>
<td>475</td>
<td>8960</td>
<td>0,68</td>
<td>21,5</td>
</tr>
<tr>
<td>Kvarnbäcken</td>
<td>653</td>
<td>2160</td>
<td>159</td>
<td>5320</td>
<td>1,25</td>
<td>4,88</td>
</tr>
<tr>
<td>Lingsbergsdiket</td>
<td>792</td>
<td>2450</td>
<td>153</td>
<td>4860</td>
<td>1,45</td>
<td>8,08</td>
</tr>
<tr>
<td>Utloppet</td>
<td>118</td>
<td>921</td>
<td>55,6</td>
<td>5220</td>
<td>0,368</td>
<td>1,44</td>
</tr>
<tr>
<td>Gränsvärde</td>
<td>100</td>
<td>200</td>
<td>50</td>
<td>30000</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>

Mängder i µg/l.

Halterna av magnesium och krom ligger klart under gränsvärden, men det saknas gränsvärde för zink. Alla tre metallerna kan läcka från industriella verksamheter, men speciellt magnesium finns ibland i höga koncentrationer i naturliga jordar, speciellt jordar med låg pH. Mängden krom och zink är höga i Lingsbergsdiket, vilket alltså pekar mot hantering av metaller i tillrinningsområdet som också aluminium och järn gör, med den skillnaden att värdena ligger långt under gränsvärden. Det klart högsta zinkvärdet hittades i vatten från Åstadiket. Liksom för de andra metallerna ligger utloppet lägst.

Sammanfattningsvis så finns det indikationer på att såväl Kvarnbäckens som Lingsbergsdikets vatten har påverkats av mänskliga aktiviteter, medan de höga värdena i Åstadiket är svårare att förklara. Att värdena i utloppet ligger lägst för alla metallerna visar att mycket av metallerna sedimentrar i sjöängen.

Figur 23. Metaller som kan härröra från jordbruk eller avlopp.

Blyvärdena är lite intressant att studera, eftersom det borde vara vid Angarnsvägen de högsta halterna skulle finnas (sentida utlakning av lagrat bly). Det stämmer också, men även Lingsbergsdiket är påverkat. Tillviss del fastläggs bly i sjöängens sediment.

Kadmiumhalterna är mycket låga. Det lägsta värdet finns i utloppet, vilket alltså tyder på att även den lilla mängd kadmium som kommer med tillflödena lagras upp i Angarnssjöängens bottensediment.

Metaller i sediment

I det här avsnittet diskuteras också metallhalterna i vattenproverna.

En hel del av metallerna sedimentrar på sin väg ned till sjöängen. Sedimentprovtagningar ger en bättre bild över tiden av hur mycket som transporteras i systemet. Vid provtagningen i augusti togs därför sedimentprov från samtliga provtagningsstationer. Halterna jämfördes, där det varit möjligt, också med de värden som uppmättes 1987.

Flera av de metaller som analyserats har ingen egentlig ekologisk betydelse, men det har varit intressant ändå att ta med dem, eftersom de ändå ingått i analyskostnaden.

Några av metallerna, arsenik (As), kadmium (Cd), kvicksilver (Hg), bly (Pb) och strontium (Sr) är intressant att diskutera eftersom de ofta kan sägas vara en miljöförorening. Bly och kadmium har diskuterats i föregående avsnitt. Även i detta fall ligger de vattendrag som passerar Angarnsvägen högt och värdena får alltså sägas vara kvarvarande rester efter blytillsatser i bensin. Ändå finns det högsta värdet i Åstadiket. Däremot är värdena lägre, relativt sett, i Åstadiket, Lingsbergsdiket och utloppet än då det gällde bly i vattnet.

Förteckning över värdena:

<table>
<thead>
<tr>
<th>Element</th>
<th>Lundbydiket övre</th>
<th>Lundbydiket nedre</th>
<th>Kvarnbäcken</th>
<th>Åstadiket</th>
<th>Lingsbergsdiket</th>
<th>Utloppet</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS %</td>
<td>17.2</td>
<td>20.7</td>
<td>12.7</td>
<td>12.1</td>
<td>16.7</td>
<td>16.5</td>
</tr>
<tr>
<td>As</td>
<td>5,06</td>
<td>5,99</td>
<td>8,97</td>
<td>5,6</td>
<td>5,55</td>
<td>4,22</td>
</tr>
<tr>
<td>Ba</td>
<td>119</td>
<td>111</td>
<td>254</td>
<td>93</td>
<td>62,6</td>
<td>129</td>
</tr>
<tr>
<td>Be</td>
<td>2,33</td>
<td>2,92</td>
<td>2,83</td>
<td>4,61</td>
<td>6,32</td>
<td>1,93</td>
</tr>
<tr>
<td>Cd</td>
<td>1,01</td>
<td>1,03</td>
<td>0,982</td>
<td>2</td>
<td>2,55</td>
<td>0,483</td>
</tr>
<tr>
<td>Co</td>
<td>34,2</td>
<td>40,3</td>
<td>31,5</td>
<td>44,5</td>
<td>36,7</td>
<td>18,3</td>
</tr>
<tr>
<td>Cr</td>
<td>37,1</td>
<td>39,7</td>
<td>33,7</td>
<td>25,9</td>
<td>29,7</td>
<td>40,9</td>
</tr>
<tr>
<td>Cu</td>
<td>41,6</td>
<td>48,1</td>
<td>33,2</td>
<td>70,1</td>
<td>45,7</td>
<td>36,9</td>
</tr>
<tr>
<td>Fe</td>
<td>33500</td>
<td>33100</td>
<td>73900</td>
<td>25200</td>
<td>28800</td>
<td>40300</td>
</tr>
<tr>
<td>Hg</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mn</td>
<td>556</td>
<td>1020</td>
<td>3700</td>
<td>827</td>
<td>322</td>
<td>450</td>
</tr>
<tr>
<td>Ni</td>
<td>47,2</td>
<td>53,7</td>
<td>36</td>
<td>75,2</td>
<td>102</td>
<td>34,9</td>
</tr>
<tr>
<td>P</td>
<td>1510</td>
<td>1840</td>
<td>2160</td>
<td>2250</td>
<td>1350</td>
<td>1280</td>
</tr>
<tr>
<td>Pb</td>
<td>24,5</td>
<td>25,3</td>
<td>23,7</td>
<td>20,2</td>
<td>18,5</td>
<td>20</td>
</tr>
<tr>
<td>Sr</td>
<td>33,6</td>
<td>31,4</td>
<td>50</td>
<td>52,3</td>
<td>39,2</td>
<td>38,8</td>
</tr>
<tr>
<td>V</td>
<td>34,6</td>
<td>38,6</td>
<td>35,9</td>
<td>28,9</td>
<td>28,2</td>
<td>35,8</td>
</tr>
<tr>
<td>Zn</td>
<td>259</td>
<td>337</td>
<td>247</td>
<td>383</td>
<td>411</td>
<td>156</td>
</tr>
</tbody>
</table>

Figur 24. Metaller i sedimenten. Provtagning i augusti 2016. Torrsubstans (TS) i procent av provvikten, metallhalter i µg/kg torrsubstans. Gula fält visar högsta halt av resp. metall.

Järnvärdet i Kvarnbäcken är skyhögt jämfört med de andra provtagningsstationerna, vilket också var fallet 1987. Detta järn kommer med stor sannolikhet från Okvista och den gamla tippen där (bl.a. deponerades det gamla bilar där). Lite oväntat ligger utloppet inte lägst, det är istället Åstadiket!

Jämför vi de bågge provtagningsstationerna i Lundbydiket är halterna ofta högre på den nedre stationen. Möjligen skulle de kunna antyda att metallerna långsamt transportereras nedåt i vattendragen och slutligen sedimenterar i sjöängens bottensediment. Lingsbergsdiket har högsta halt av fyra metall (beryllium, kadmium, nickel och zink), Åstadiket har också högsta halt av fyra metall (kobolt, koppar, fosfor och strontium), liksom Kvarnbäcken (arsenik, barium, järn och mangan). Lundbydiket nedre har högsta halt för två metall (bly och vanadin) och utloppet för en metall (krom).

![Blyhalter i sediment 1987 (blå stapel) och 2016 (röd stapel). Grå stapel anger gränsvärdet för tjänligt vatten. Samtliga mätvärden är numera under Naturvårdsverkets gränsvärde. Mg/kg torrsubstans (OBS!).](image)

Figur 26. Mängden järn i sediment 1987 (blå stapel) och 2016 (röd stapel). Mg/kg torrsubstans (OBS!).

Figur 27. Mängden koppar i sediment 1987 (blå stapel) och 2016 (röd stapel). Grå stapel anger gränsvärden för koppar i sediment. Mängder i mg/kg.

![Diagram](image)

Figur 28. Mängden krom i sedimentprov 1987 (blå stapel) och 2016 (röd stapel). Mängder i mg/kg.

Mängden krom i sedimenten är nästan identiska mellan 1987 och 2016. Inga gränsvärden har satts. Det är lite anmärkningsvärt att utloppet har de högsta värdena båda åren. Krom används i legeringar med järn för att få stålet starkt. Normala halter i jordskorpan är 1 000 mg/kg, vilket är mycket högre än i sedimenten från Angarnområdet. Det anses att krom inte har någon bevisad påverkan på djur eller människor, men det säljs ändå i hälsokostprodukter för att bl.a. reglera blodsockerhalten. Halterna i det tillrinnande vattnet är 0,4 – 1,4 µg/l.

![Diagram](image)

Figur 29. Mängden mangan i sediment 1987 (blå stapel) och 2016 (röd stapel). Mängder i mg/kg.

Figur 31. Mängden vanadin i sediment 1987 (blå stapel) och 2016 (röd stapel). Mängder i mg/kg.
Vanadin används liksom nickel i metallurgisk verksamhet tillsammans med krom. Samtliga mätstationer visar kraftigt minskade halter sedan 1987. Skulle detta kunna tyda på en tidigare luftspridning? Eller att det förekommit i konstgödselmedel? Jordskorpan innehåller i medeltal 150 mg vanadin per kg, dvs. högre än värdena i Angarnområdet. Halterna i tillrinnande vatten var 0,5 – 1,5 µg/l.
Jämförelser med provtagningar 1974 och 1985/86

Det finns alltid gott om syre i vattnet, men syremättnaden kan i juli/augusti gå ned till 40 procent eller lägre. Lingsbergsdiket ligger lite lägre, eftersom det sannolikt finns syreförbrukande organiskt material i vattnet från träden längs diket. I Kvarnbäcken ligger pH normalt över 7, liksom i Lundbydiket. I Lingsbergsdiket är pH mellan 6,2 och 6,9. Det beror säkert på att det finns mer skog i dikets närhet än för de övriga dikena/åarna och döda blad och barr (speciellt barr) ger lågt pH vid nedbrytning.

När det gäller provtagningsarna 1985/86 och 1987/90 bör noteras att de utförts av samma laboratorium, Kemiska laboratoriet vid institutionen för Kulturteknik, KTH. Skillnaderna i mätvärden bör därför inte kunna skyllas på olika analytisk teknik.

Sammanfattningsvis så är det inte alltid möjligt att jämföra mätvärden rätt av, men i likhet med jämförelsen med åren 1987/90, går det inte att säga att det blivit sämre runt Angarnssjöängen idag utan snarare att det i ett antal fäll kunnat bli bättre.